

55 min to be

Fit for 55!

Demand Response in Portugal *State of play, evolutions and perspectives*

When?

1st March 2024 11:00 - 11:55 CET (10:00 am Lisbon time)

On-line

Agenda

- Adriana GUTH, DG ENER
 - José CAPELO
 - Pedro PEREIRA
 - João RAFAEL

• Jorge MENDONÇA e COSTA

APIGCEE

• Diogo FURTADO LOPES

axians

Q&A + questions on-going => in the chat box please

Demand Response – EMD reform and the implementation of the Clean Energy Package

DR4EU Workshop

01 March 2024

European Commission – DG Energy Internal Energy Market

Flexibility needs are increasing

Increase of flexibility needs, source: JRC

Note: The list of technologies is non-exhaustive (with e.g. the storage category covering several different technologies). As mentioned, coupling electricity with other energy sectors (sector integration) may provide significant flexibility services.

The EU electricity system will require more than twice (2.4) the current quantify of flexibility resources by 2030. This increase applies for daily, weekly and monthly flexibility, to be provided by different flexibility sources.

Figure 18:

First, implementation of Clean Energy Package

- Non-discriminatory access of demand response to all electricity markets, either directly or through aggregation (Art. 17)
- Full recognition of (independent) aggregators as market participants (Art. 17)
- Customer entitlement to contract with **independent aggregator** of their choice, without need for consent or prior agreement of their supplier (Art. 13)
- Strict limits to compensation payments (Art 17(4))
- Use of flexibility services by system operators, in particular from distribution networks, for flexibility services including congestion management (Art. 32)

Complement the existing framework with rules on Demand Response

→ Address remaining regulatory barriers for the development of demand side flexibility and other flexibility resources in the electricity market.

- New **network code on demand response**, including rules on aggregation, energy storage and demand curtailment based on Art. 59(1) Electricity Regulation.
- Draft to be submitted by ENTSO-E and EU DSO Entity by May 2024. ACER will conduct a public consultation and finalize it by the end of this year for submission to European Commission.
- Current draft covers in particular:
 - Market access (aggregation models, baseline, settlement)
 - Prequalification and process to engage in the market
 - Market design for congestion management and voltage control
 - TSO-DSO coordination, data exchange

Looking forward: The reform of the electricity market design

➔ Boost non-fossil flexibility to accelerate RES, impact positively the prices, reduce dependency from fossils and provide system/grid services.

- Assessment of flexibility needs at member state level:
 - Based on an EU methodology
 - ACER analysis at EU level and recommendations of cross-border relevance, including on removing barriers
- Indicative national objective for non-fossil flexibility, including specific contributions of both demand response and energy storage
- Non-fossil flexibility support scheme
- Enhance the use of flexibility services by system operators:
 - Network tariffs to incentivize the use of flexibility services
 - Possibility to use data from dedicated metering devices

Demand Response in Portugal State of play, evolutions and perspectives

José Capelo

Portuguese Energy Services Regulatory Authority

1.3.2024

Portuguese Legal framework

The Decree-Law n.º 15/2022, of 14 January, establishes the organization and operation of the National Electricity System, transposing Directive (EU) 2019/944 and Directive (EU) 2018/2001. It provides the framework for the Networks Operation Code (ROR), which is approved by ERSE, establishing, among others:

- The conditions for managing electricity flows in the networks, including procuring and activating flexibility resources, in accordance with the European network codes and ensuring their interoperability
- The conditions for the technical verification of network operation and for ensuring the real-time demand-generation equilibrium through procurement and activation of balancing services
- The rules for calculating and billing system imbalance costs
- The conditions by which the global system manager monitors the availability of the power plants and network elements, promoting the coordination of the planned outages.

ROR was approved by Regulation n.º 816/2023, of 27 July, following Public Consultation n.º 113.

ROR foresees the Manual of Procedures for the Global Management of the Electric Sector System (MPGGS), approved by Directive n.º 19/2023, of 26 December, under revision

Pilot Project for Demand Participation in the Regulation Reserve Market

The Pilot Project, which started on April 2, 2019 and lasted for **1 year**, aimed to ensure **equal treatment** in the participation of **qualified consumers**, or their representatives, in the **regulation reserve market**.

Consumers qualified by the Transmission System Operator (TSO) who have a demand capacity equal to or greater than **1 MW** could participate in the Pilot Project, obtained the necessary authorization from the TSO that proves **the technical and operational capacity** to provide the regulation reserve, and are connected to the grid at a voltage level **equal to or greater than medium voltage**.

On December 28, 2018, ERSE approved **Directive n.º 4/2019**, of January 15, defining the **rules of the Pilot Project** for the participation of demand in the regulation reserve market.

Directive n.º 20 April, approved that the rules established by Directive n.º 4/2019 and, the parties willing, the respective contracts, continue to apply.

On 30 July 2020, ERSE approved the **Operational Report of the Pilot Project**, during its execution phase, which includes the Report prepared by **REN** and the Contributions of the **agents directly involved**.

On 27 July 2023, the **ROR was approved** incorporating the rules that allow demand to participate in the ancillary services markets on a **regular and permanent basis**.

Motivation

Consumer participation in the ancillary services market is an issue that has been raised by consumers or their representatives in meetings with ERSE.

The possibility for consumers to participate in all components of the electricity market, which includes all aspects of the ancillary services market, is provided for in European regulations and contributes to competition, security of supply and the sustainability of the electricity system.

As part of the 2017 regulatory review, the Network Operation Code was amended explicitly allowing the participation of demand in the ancillary services market on an equal condition with generation.

Given that neither electricity network operators nor consumers have any experience, it was **decided** to start by **developing a pilot project** for consumer participation in the system services market that would allow "learning by doing".

Fonte: Smart Energy Demand Coalition (SEDC), "*Explicit Demand Response in Europe: Mapping the Markets 2017*", <u>www.smarten.eu</u>, tal como consultado a 4 13/10/2018

Cooperation - Meetings and public consultation

Active participation of all parties involved:

- 1 to 31.10.2018 67th public consultation of ERSE
- 15.10.2018 Meeting with ERSE's Advisory Board
- 18.10.2018 Meeting with REN, the Portuguese TSO
- 23.10.2018 Meeting with APIGCEE, the Portuguese Association of Industrial Large Consumers of Electric Energy
- 30.11.2018 Meeting with the suppliers
- 13.12.2018 Meeting with the main actors in the pilot project
- 28.12.2018 Approval of Directive 4/2019 defining the rules of the Pilot Project for the participation of demand in the regulation reserve market.
- 15.1.2019 Publication of Directive 4/2019

Demand response in Portugal – main aspects of the process

on the daily market, would

have cost €50x20=€1000

produce and had sold for

market

50x20= 1000 € on the daily

Business volume in 2023

National demand (MWh)	50 729 000
Daily Market Price (€/MWh)	87,72
Energy regulation upwards (MWh)	1 215 000
Price (€/MWh)	111,20
Business volume upwards reserve (€)	135 108 000
Energy regulation downwards (MWh)	1 752 000
Price (€/MWh)	47,54
Business volume downwards reserve (€)	83 290 080
Total energy mobilised (MWh)	2 967 000
Business volume (€)	218 398 080

Daily programme, tariffs and readings

Participants: Consumer installations or traders representing a specific consumer installation Constant hourly product until the end of the hour, only mobilisable up to 15 minutes before the hour

Knowing that Reading = Programme + GGS Orders + Imbalances ⇔ R=P+O+I,

Energy billing (E): E = R - O

The meter reading is adjusted from the GGS mobilization orders

Demand facility's contribution to Portfolio Imbalances: Assumption that GGS orders are fully complied with

GGS mobilization orders are not subject to access tariffs

GGS orders are not adjusted for losses

Information flows

Directive n.º 4/2019, of January 15

Theme	Rule
Pre-qualification	1 MW, technical qualification, MV or higher
Delivery period	1 hour
Aggregation	Not allowed
Network access tariff	Downwards activation (increase in demand) not subject to payment of network access charges
Adjustment for losses	Not applicable
Imbalances	Orders fully complied with
Settlement and invoicing	Provisions of the MPGGS
Penalties for non- compliance	Not applicable
Information flows	Specifies the obligations of each entity

ERSE Report

On 30 July 2020, ERSE approved the **Operational Report of the Pilot Project**, during its execution phase, which includes the Report prepared by **REN** and the Contributions of the **agents directly involved**.

2	ERSE	
	ENTIDADE REGULADORA DOS SERVIÇOS ENERGETIDOS	
	PROJETO-PILOTO DE PARTICIPAÇÃO DO CONSUMO	NO
	MERCADO DE RESERVA DE REGULAÇÃO	
	-	
	-	
	RELATÓRIO PREVISTO NO ARTIGO 16.º	
	DA DIRETIVA N.º 4/2019	
		ulhe 2020

4	IDENTIFICATION OF THE CHANGES TO BE MADE TO CURRENT REGULATIONS 43
4.1	Imbalances by Market Agents and suppliers43
4.2	Access tariffs
4.3	Adjustment for losses44
4.4	Change in integration periods from 1 hour to 15 minutes45
4.5	Aggregation45
4.6	Indivisible Offers
4.7	Definition of Balancing Service Provider and Balancing Responsible Party46
4.8	Issues identified for regulatory change47

ENTIDADE REGULADORA DOS SERVIÇOS ENERGÉTICOS

Participating agents and business volume

MWh	2019 2nd semester	2020	2021	2022	2023
Pilot Project					
Active agents	4	9	11	23	27
Mobilizations	1 757	5 776	3 896	5 161	3 263
MWh upwards	680	259	1 702	6 992	5 546
MWh downwards	-4 693	-22 221	-16 262	-11 787	-7 313
MWh total	5 372	22 480	17 964	18 779	12 858
Business volume (€)	185 480	469 843	1 489 261	2 690 054	964 316
(%)	0,25%	0,91%	0,95%	1,12%	0,44%
Regulation reserve market					
Tertiary reserve upwards	693 000	707 000	619 000	521 000	1 215 000
Tertiary reserve downwards	1 096 000	1 151 000	1 000 000	1 240 000	1 752 000
Weighted average price upwards	60,20	38,96	127,26	196,92	111,20
Weighted average price downwa	30,80	20,69	78,26	111,41	47,54
Average daily market price PT	47,87	33,99	112,01	167,89	87,72
Business volume (€)	75 475 400	51 358 910	157 033 940	240 743 720	218 398 080

Energy and hourly mobilizations

Energy mobilized in the Pilot Project since 2019

Upwards Downwards

ROR was approved by Regulation no. <u>816/2023</u>, of 27 July

The rules of Directive 4/2019 become part of the current regulatory framework (ROR, MPGGS)

Theme	Rule incorporated into the regulatory framework
Pre-qualification	MPGGS
Delivery period	MPGGS – 15 minutes (mFRR)
Agregation	$MPGGS - Capacity \ge 1 MW$
Adjustment for losses	ROR
Imbalances	MPGGS
Settlement and invoicing	MPGGS
Penalties for non- compliance	MPGGS – specific tolerance and penalties for demand
Information flows	MPGGS

Old problems, new challenges

Old problems: system security and balancing, renewables integration, clean Energy Package targets New challenges: aggregation, self-consumption, energy communities, EV, storage

New platforms for TSOs procurement of balancing needs

Platform	Date
IGCC aFRR PT PICASSO	12.2020
mFRR PT MARI	soon
TERRE	29.2.2020

Being part of the system, all players are called to contribute to new solutions for system security and management under ancillary services markets.

Thankyou! José Capelo jcapelo@erse.pt

EDIFÍCIO RESTELO Rua Dom Cristóvão da Gama, 1, 3º 1400-113 Lisboa **Portugal Tel:** +(351) 21 303 32 00 **e-mail**: erse@erse.pt **url:** http://www.erse.pt

European workshop on Demand Response in Portugal

01/03/2024 - Online

INDEX

01 PILOT PROJECT FOR THE PARTICIPATION OF DEMAND FACILITIES

02 BALANCING CAPACITY PRODUCTS

 $\mathbf{01}$

PILOT PROJECT FOR THE PARTICIPATION OF DEMAND FACILITIES

Pilot Project for the Participation of Demand Facilities

Manual de Procedimentos da Gestão Global do Sistema (MPGGS)

National Regulatory Agency Diretive n.º 4/2019, of 15 of January, that approves the rules for the Pilot-Project for the participation of consumption facilities on the Reserva de Regulação Market

Bids

Pilot Project for the Participation of Demand Facilities

Main Features		
Mode of Activation		Manual
Activation Type		Scheduled
Full Activation Time	1	15 minutos
Minimum Quantity		1 MW
Maximum Quantity		Limited to the available power of the Facility
Mininum duration of the delivery period	2	60 minutes
Maximum duration of the delivery period	3	60 minutos
Location		Balancing Area =Physical Unit

Type of Bids:	Divisible Bids
Bid Granularity:	Minimum of 1MW and, afterwards, 0,1 MW
Price Resolution:	0,01 €/MWh

Pilot Project for the Participation of Demand Facilities

Downwards activations (increase in consumption) are not subject to grid access tariffs

Activations on the Balancing Market are not subject to grid losses

It is assumed that the activations are fulfilled by the Market Parties

Exemption to install real time measurements equipment and communications

Pilot Project for the Participation of Demand Facilities

	Upwards Reg	Upwards Regulation		
Energy	[GWh]	[%]		
Coal	94,3	3,2%		
Natural Gas	503,7	16,9%		
Hydro	1 548,0	51,9%		
Pumping Stations	821,7	27,5%		
Demand	15,2	0,5%		
Total	2 983,0			

Contribution of the Demand to the Total of
Upwards Regulation Ativations

	Downwards R	Downwards Regulation		
Energy	[GWh]	[%]		
Coal	57,9	1,2%		
Natural Gas	439,7	8,8%		
Hydro	2 523,0	50,7%		
Pumping Stations	1 897,4	38,1%		
Demand	62,3	1,3%		
Total	4 980,3			

Contribution of the Demand to the Total of Downwards Regulation Ativations

Pilot Project for the Participation of Demand Facilities

Upwards Downwards

02

BALANCING CAPACITY PRODUCTS

Balancing Capacity Products

Regulatory Framework

Manual de Procedimentos da Gestão Global do Sistema (MPGGS)

National Terms and Conditions for a Specific Balancing Capacity Product aproved by the National Regulatory Authority

Balancing Capacity Products

Balancing Capacity Product

Balancing Capacity Products

Balancing Capacity Product

Main Features	Reserva de Regulação Capacity Product (2022 -2023)	mFRR Schedule Capacity Product (2024)
Product	Upwards Regulation Reserve	Upwards Regulation Reserve
Minimum Quantity	4 MW	1 MW
Maximum Quantity	Limited to the available power of the Facility	Limited to the available power of the Balancing Area
Location	Balancing Area = 1 Physical Unit	Balancing Area
Tecnologies	Consumers connected to VHV, HV and MV	Tecnoclogy Neutral
Duration of the delivery period	Year	Year, Quarter & Month
Ativação	Reserva de Regulação	mFRR schedule

Balancing Capacity Products

Reserva de Regulação Capacity Product (2022-2023)

Maturity	Required (MW)	Allocated		Price (€/MW	
		(MW)	# of Demand Facilities	per hour)	
2022	425	304,4	21	20	
2023	800	316,9	23	44	

Balancing Capacity Products

mFRR Capacity Product

Maturity	Required (MW)	Allocated		Price (€/MW
		(MW)	# of Demand Facilities	per hour)
YR 2024	450	360,6	21	48
Q1 2024	200	25	3	44
Jan 2024	150	0	0	n.a.
Feb 2024	150	0	0	n.a.
Mar 2024	150	6	1	38

OBRIGADO Thank you

Demand Response in Portugal – DR4EU Workshop

State of play, evolutions and perspectives in E-REDES

João Rafael (Strategy and Regulation)

1 March 2024

E-REDES is Portugal's mainland DSO and ensures the supply of electricity with quality, safety and efficiency, in a context of great change associated with the energy transition

6-REDES

Integrated operation of the high, medium and low voltage distribution network in mainland Portugal:

- 1 HV/MV concession
- 278 municipal LV concessions

The acceleration of the energy transition has created additional pressure on distribution networks, and this is a transversal reality in the vast majority of European countries

CHALENGES

- Integration of distributed generation
- Electrification of demand

Development of **new** energy services and markets

Growth of **customer connections**

Growth of electric vehicles

In order to respond to the paradigm shift of the energy transition, new solutions must be sought for planning and operating the network, especially ones with more flexibility

&-REDES

Setting up non-firm connections for network users is one of the concepts that E-REDES is developing as flexibility mechanisms

- · Non-firm connection opportunity: If there is an option that decreases cost and/or time
- Non-firm capacity = Requested capacity
- Firm capacity = Requested capacity Biggest restriction
- E-REDES should identify the restrictions with probability, period and dimension

FlexC – Pilot proposal for flexible connections

Utilizing a grid monitoring device to access real time available power in collective buildings and direct it to charge EV via a flexible connection in the common building garage point of delivery.

- Possibility to charge a large number of EV without the need for grid connection reinforcement (less time and money)
- Improving grid utilization and enabling these flexible connections to provide additional flexibility services

Ilustrative example

FIRMe project is a key tool to start building local flexibility markets in Portugal that will allow all stakeholders to gain hands-on experience

6-REDES

Scope	Goals	0
Identify grid opportunities to provide flex Tenders to procure Flexibility Sign contracts Use contracts for network operation	 Develop internal skills (planning, procuring, operation) Engage stakeholders and develop the flex market 	
Picto Platform to support	tenders FIRMe webpage	•

1.

2.

3.

4.

Identified 8 flexibility opportunities

- Secure Grid normal operation support
- Restore Support to restore the service in case of supply constraints
- Dynamic To use on scheduled interruptions (e.g. maintenances)

Results

- +100 flex assets registered in the platform
- 1st set of tenders concluded: 623 bids from 21 distinct FSPs (Flexibility Service Providers)
- 15 FSPs with accepted competitive bids
- Contracts to be sign March 14th
- New tenders to come in 2024

FIRMe - Conclusions/Lessons learnt so far

٠

Flexibility valuation

- When comparing traditional investment vs a flexibility alternative, the **investment** almost always **appears to be the better option** in a long-term perspective (has impact on losses reduction).
- Benchmark with other DSOs helped improving methodologies.

It's not all about price: Dynamic product (that had an advance notice of **1 week ahead**) raised much more interest when compared to the other products who had a short notice activation.

- Difficulty to approach as this is a new and **complex business model**.
- DSO reality: Affects market liquidity Small geographical areas to procure flexibility (vs TSO reality)
- E-REDES customer managers gave an important push for engaging market agents, in particular industrial customers.
- The importance of DSR: 19/21 entities who bided for FIRMe were industrial customers.
- Having a price signal disclosure seems to be advised before opening the bids.

Engaging the market

6-REDES

Thank you!

Keep in contact!

Email: joao.rafael@e-redes.pt

DEMAND RESPONSE IN PORTUGAL THE LARGE CONSUMERS PERSPECTIVE

APIGCEE - ASSOCIAÇÃO PORTUGUESA DOS INDUSTRIAIS GRANDES CONSUMIDORES DE ENERGIA ELÉCTRICA

Jorge Mendonça e Costa

directorexecutivo@apigcee.pt

APIGCEE

Associação Portuguesa dos Industriais Grandes Consumidores de Energia Eléctrica

 Large consumers characterisation
 Demand response – Large consumers perspective

3. Conclusions

2

APIGCEE ASSOCIATES

- AAPICO
- AIR LIQUIDE
- ALTRI
- BA GLASS
- BONDALTI
- CIMPOR
- LUSO FINSA
- MEGASA
- NAVIGATOR
- SECIL
- SOLVAY/HYCHEM
- SOMINCOR
- VIDRALA

APIGCEE FACTS AND FIGURES

- Industrial installations: 33
- Turnover: ≈ 5 000 M€
- Exports: 3 500 M€ (70 % of total sales)
- Gross Value Added (GVA): 1 500 M€
- Annual Investment: 400 M€
- Direct employment: 20 000
- Electrical energy consumption: 5 200 GWh/year
- Electricity costs: 30 50% of production variable costs
- 10% of the total electricity consumption in Portugal
- 25% of the industrial electricity consumption

Large consumers characterisation Demand response – Large consumers perspective

5

DEMAND RESPONSE - LARGE CONSUMERS PERSPECTIVE

Drawbacks:

- Grid balancing services is not the core business of electrointensive consumers;
- Adaptation of the production processes to load shedding (or ramp-up) within very short notice (e.g. very short activation time);
- Risk of missing TSO orders of load shedding (or ramp-up) due to communication problems (e.g. webservice) with a very short time for using backup communication solutions;

Advantages:

- The demand response provided by large consumers improves the grid resilience and is an additional tool for grid balancing services;
- Better integration with other grid balancing services provided by electricity generators;
- Additional flexibility in the presence of large embedded renewable production that introduce uncertainty in the electrical system management (e.g. intermittency).

6

DEMAND RESPONSE – CONSUMERS PARTICIPATION

DR4EU Demand Response in Portugal

18.12.2023

Industrial Installation	Operation start
Solvay Portugal, S.A.	12.07.2019
Air Liquide (Sines)	12.07.2019
Cimpor S.A. (Loulé)	16.10.2019
Bondalti Chemicals S.A.	14.11.2019
Megasa (Seixal)	14.11.2019
Megasa (Maia)	14.11.2019

AUCTIONS – REGULATION RESERVE AND MANUAL FREQUENCY RESTORATION RESERVE

Auction	Date	No. of total Installations	No. of Installations (APIGCEE)	Available Power for auction (MW)	Total Power auctioned (MW)	Power auctioned by APIGCEE (MW)
1 st BRR	14.12.2021	21	19	425.0	304.4	292.1
2 nd BRR	24.11.2022	23	19	800.0	316.9	292.1
3 rd BRR	18.01.2023	0	0	483.0	0	0
BmFRR	18.12.2023	21	19	450.0	360.06	347.4

 Large consumers characterisation
 Demand response – Large consumers perspective

3. Conclusions

Large Consumers:

- They provide the basis of national electricity consumption and at the same time are the "engine" of the economy of exported tradable goods;
- Exhibit electrical load diagrams that are <u>predictable</u>, <u>stable</u>, <u>interruptible</u> and quite often <u>modulable</u> which allow them to participate in grid balancing services;
- Can absorb much of the electrical energy produced by renewable technologies (intermittency) during peak and off-peak periods;
- Future participation in other European balancing services platforms (e.g. PICASSO

 Platform for the International Coordination of Automated Frequency Restoration
 and Stable System Operation).

Enabling Market Operations for Demand Response

March 2024

ENABLING MARKET OPERATIONS FOR DEMAND RESPONSE

There are no relevant technology barriers to the deployment of a Demand Response Market

Metering	Installation of metering at necessary resolution.
	Monitoring of final energy services.
Energy service sensors	Good requirement elicitation, to ensure DR schemes compensate
••	according to user preferences on various energy services.
Computing	
	Optimisation simplification.
Computing power	Distribution of computation load.
	Leveraging of additional network resources, e.g., cloud
Communication	
	Open, agnostic technologies.
	Plugin-based architectures.
Interoperability	Alliances/collaboration to develop standards.
	• Agreement on semantics, to develop a common language across
	industries.
	Adopt Security & Privacy by design.
Data security & Privacy	Have a data life cycle management strategy.
Data security of rivacy	Allow for intuitive end-user configuration tagging of data.
	Adopt current state of the art.
Standardisation	
Multiple competing standar	ds • Consolidation of standards amongst energy industry.
Technology skills	
	Outsourcing as an option.
Workforce skillset	Address identified factors for retaining talent.
	Know the requisite skills mix.
	Torest continuel loorners with telerance of ambiguity

axians

axians

(48) ... Member States that already apply a capacity mechanism should consider to promote the participation of non-fossil flexibility such as demand response and energy storage by redesigning criteria or features without prejudice to the application of Article 22 of Regulation (EU) 2019/943."

Source: Regulation Of The European Parliament And Of The Council amending Regulations (EU) 2019/943 and (EU) 2019/942 to improve the Union's electricity market design. 19 of December 2023

Diogo Furtado Lopes

diogo.lopes@axians.com Energy & Utilities Market Lead Axians Digital Consulting – Vinci Energies

